Identification of Approximative Nonlinear State-space Models by Subspace Methods

نویسندگان

  • Andreas Schrempf
  • Vincent Verdult
چکیده

A subspace identification algorithm for state-affine state-space systems which allows to approximate nonlinear systems arbitrarily well is derived. The proposed algorithm depends on an approximation step where a detailed approximation error analysis is provided. A special case is presented in which this approximation error vanishes. To tackle higher-order systems and ill-posed problems a regularized kernel method is proposed. The algorithm is evaluated by a simulation study. Copyright c ©2005 IFAC

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms

Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...

متن کامل

A New High-order Takagi-Sugeno Fuzzy Model Based on Deformed Linear Models

Amongst possible choices for identifying complicated processes for prediction, simulation, and approximation applications, high-order Takagi-Sugeno (TS) fuzzy models are fitting tools. Although they can construct models with rather high complexity, they are not as interpretable as first-order TS fuzzy models. In this paper, we first propose to use Deformed Linear Models (DLMs) in consequence pa...

متن کامل

Subspace method for continuous-time fractional system identification

Abstract: The aim of this paper is to develop a subspace method for state-space identification of continuous-time systems using fractional commensurate models. As compared to the classical state-space representation, the commensurate differentiation order must be estimated besides the state-space matrices. The latter are estimated with conventional subspace-based techniques using QR and singula...

متن کامل

Tensor network subspace identification of polynomial state space models

This article introduces a tensor network subspace algorithm for the identification of specific polynomial state space models. The polynomial nonlinearity in the state space model is completely written in terms of a tensor network, thus avoiding the curse of dimensionality. We also prove how the block Hankel data matrices in the subspace method can be exactly represented by low rank tensor netwo...

متن کامل

Multivariable Identification of Continuous-time Fractional System

ABSTRACT This paper presents two subspace-based methods, from the MOESP (MIMO output-error state space) family, for state-space identification of continuous-time fractional commensurate models from sampled input-output data. The methodology used in this paper involves a continuous-time fractional operator allowing to reformulate the problem so that the state-space matrices can be estimated with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005